Source code for aggmap.aggmodel.explainer

# -*- coding: utf-8 -*-
"""
Created on Fri Sep. 17 17:10:53 2021

@author: wanxiang.shen@u.nus.edu
"""


import numpy as np
import pandas as pd

from tqdm import tqdm
from copy import copy
import shap


from sklearn.metrics import mean_squared_error, log_loss
from sklearn.preprocessing import StandardScaler

from aggmap.utils.matrixopt import conv2
from aggmap.utils.logtools import print_warn, print_info



[docs]class shapley_explainer: """Kernel Shap based model explaination, the limiations can be found in this paper:https://christophm.github.io/interpretable-ml-book/shapley.html#disadvantages-16 <Problems with Shapley-value-based explanations as feature importance measures>. The SHAP values do not identify causality Global mean absolute Deep SHAP feature importance is the average impact on model output magnitude. Parameters ---------- estimator: model with a predict or predict_probe method mp: aggmap object backgroud: string or int {'min', 'global_min','all', int}. if min, then use the min value as the backgroud data (equals to 1 sample) if global_min, then use the min value of all data as the backgroud data. if int, then sample the K samples as the backgroud data if 'all' use all of the train data as the backgroud data for shap, k_means_sampling: bool, whether use the k-mean to sample the backgroud values or not link : {"identity", "logit"}. A generalized linear model link to connect the feature importance values to the model output. Since the feature importance values, phi, sum up to the model output, it often makes sense to connect them to the output with a link function where link(output) = sum(phi). If the model output is a probability then the LogitLink link function makes the feature importance values have log-odds units. args: Other parameters for shap.KernelExplainer. Examples -------- >>> import seaborn as sns >>> from aggmap.aggmodel.explainer import shapley_explainer >>> ## shapley explainer >>> shap_explainer = shapley_explainer(estimator, mp) >>> global_imp_shap = shap_explainer.global_explain(clf.X_) >>> local_imp_shap = shap_explainer.local_explain(clf.X_[[0]]) >>> ## S-map of shapley explainer >>> sns.heatmap(local_imp_shap.shapley_importance_class_1.values.reshape(mp.fmap_shape), >>> cmap = 'rainbow') >>> ## shapley plot >>> shap.summary_plot(shap_explainer.shap_values, >>> feature_names = shap_explainer.feature_names) # #global plot_type='bar >>> shap.initjs() >>> shap.force_plot(shap_explainer.explainer.expected_value[1], >>> shap_explainer.shap_values[1], feature_names = shap_explainer.feature_names) """ def __init__(self, estimator, mp, backgroud = 'min', k_means_sampling = True, link='identity', **args): ''' Parameters ---------- estimator: model with a predict or predict_probe method mp: aggmap object backgroud: string or int {'min', 'global_min', 'all', int}. if min, then use the min value as the backgroud data (equals to 1 sample) if global_min, then use the min value of all data as the backgroud data. if int, then sample the K samples as the backgroud data if 'all' use all of the train data as the backgroud data for shap, k_means_sampling: bool, whether use the k-mean to sample the backgroud values or not link : {"identity", "logit"}. A generalized linear model link to connect the feature importance values to the model output. Since the feature importance values, phi, sum up to the model output, it often makes sense to connect them to the output with a link function where link(output) = sum(phi). If the model output is a probability then the LogitLink link function makes the feature importance values have log-odds units. args: Other parameters for shap.KernelExplainer ''' self.estimator = estimator self.mp = mp self.link = link self.backgroud = backgroud self.k_means_sampling = k_means_sampling train_features = self.covert_mpX_to_shapely_df(self.estimator.X_) if type(backgroud) == int: if self.k_means_sampling: self.backgroud_data = shap.kmeans(train_features, backgroud) else: self.backgroud_data = shap.sample(train_features, backgroud) else: if backgroud == 'min': self.backgroud_data = train_features.min().to_frame().T.values elif backgroud == 'global_min': gmin = train_features.min().min() self.backgroud_data = np.full(shape=(1, train_features.shape[1]), fill_value = gmin) else: self.backgroud_data = train_features self.explainer = shap.KernelExplainer(self._predict_warpper, self.backgroud_data, link=self.link, **args) self.feature_names = train_features.columns.tolist() # mp.alist def _predict_warpper(self, X): X_new = self.mp.batch_transform(X, scale=False) if self.estimator.name == 'AggMap Regression Estimator': # case regression task predict_results = self.estimator.predict(X_new) else: predict_results = self.estimator.predict_proba(X_new) return predict_results
[docs] def get_shap_values(self, X, nsamples = 'auto', **args): df_to_explain = self.covert_mpX_to_shapely_df(X) shap_values = self.explainer.shap_values(df_to_explain, nsamples=nsamples, **args) all_imps = [] for i, data in enumerate(shap_values): name = 'shapley_importance_class_' + str(i) imp = abs(pd.DataFrame(data, columns = self.feature_names)).mean().to_frame(name = name) all_imps.append(imp) df_reshape = self.mp.df_grid_reshape.set_index('v') df_reshape.index = self.mp.feature_names_reshape df_imp = df_reshape.join(pd.concat(all_imps, axis=1)).fillna(0) self.df_imp = df_imp self.shap_values = shap_values return shap_values
[docs] def local_explain(self, X=None, idx=0, nsamples = 'auto', **args): ''' Explaination of one sample only: Parameters ---------- X: None or 4D array, where the shape is (n, w, h, c) the 4D array of AggMap multi-channel fmaps. Noted if X is None, then use the estimator.X_[[idx]] instead, namely explain the first sample if idx=0 nsamples: {'auto', int} Number of times to re-evaluate the model when explaining each prediction. More samples lead to lower variance estimates of the SHAP values. The “auto” setting uses nsamples = 2 * X.shape[1] + 2048 args: other parameters in the shape_values method of shap.KernelExplainer ''' if X is None: print_info('Explaining the first sample only') X = self.clf.X_[[idx]] assert len(X.shape) == 4, 'input X mush a 4D array: (1, w, h, c)' assert len(X) == 1, 'Input X must has one sample only, but got %s' % len(X) shap_values = self.get_shap_values(X, nsamples = nsamples, **args) self.shap_values = shap_values return self.df_imp
[docs] def global_explain(self, X=None, nsamples = 'auto', **args): ''' Explaination of many samples. Parameters ---------- X: None or 4D array, where the shape is (n, w, h, c) the 4D array of AggMap multi-channel fmaps. Noted that if X is None, then use the estimator.X_ instead, namely explain the training set of the estimator nsamples: {'auto', int} Number of times to re-evaluate the model when explaining each prediction. More samples lead to lower variance estimates of the SHAP values. The “auto” setting uses nsamples = 2 * X.shape[1] + 2048 args: other parameters in the shape_values method of shap.KernelExplainer ''' if X is None: X = self.clf.X_ print_info('Explaining the whole samples of the training Set') assert len(X.shape) == 4, 'input X mush a 4D array: (n, w, h, c)' shap_values = self.get_shap_values(X, nsamples = nsamples, **args) self.shap_values = shap_values return self.df_imp
def _covert_x_2D(self, X, feature_names): n, w,h, c = X.shape assert len(feature_names) == w*h, 'length of feature_names should be w*h of X.shape (n, w, h,c)' X_2D = X.sum(axis=-1).reshape(n, w*h) return pd.DataFrame(X_2D, columns = feature_names)
[docs] def covert_mpX_to_shapely_df(self, X): dfx_stack_reshape = self._covert_x_2D(X, feature_names = self.mp.feature_names_reshape) shapely_df = pd.DataFrame(index=self.mp.alist).join(dfx_stack_reshape.T).T shapely_df = shapely_df.fillna(0) return shapely_df
[docs]class simply_explainer: """Simply-explainer for model explaination. Parameters ---------- estimator: object model with a predict or predict_probe method mp: object aggmap object backgroud: {'min', 'global_min','zeros'}, default: 'min'. if "min", then use the min value of a vector of the training set, if 'global_min', then use the min value of all training set. if 'zero', then use all zeros as the backgroud data. apply_logrithm: bool, default: False apply the logirthm to the feature importance score apply_smoothing: bool, default: False apply the gaussian smoothing on the feature importance score (Saliency map) kernel_size: int, default: 5. the kernel size for the smoothing sigma: float, default: 1.0. the sigma for the smoothing. Examples -------- >>> import seaborn as sns >>> from aggmap.aggmodel.explainer import simply_explainer >>> simp_explainer = simply_explainer(estimator, mp) >>> global_imp_simp = simp_explainer.global_explain(clf.X_, clf.y_) >>> local_imp_simp = simp_explainer.local_explain(clf.X_[[0]], clf.y_[[0]]) >>> ## S-map of simply explainer >>> sns.heatmap(local_imp_simp.simply_importance.values.reshape(mp.fmap_shape), >>> cmap = 'rainbow') """ def __init__(self, estimator, mp, backgroud = 'min', apply_logrithm = False, apply_smoothing = False, kernel_size = 5, sigma = 1. ): ''' Simply-explainer for model explaination. Parameters ---------- estimator: model with a predict or predict_probe method mp: aggmap object backgroud: {'min', 'global_min', 'zeros'}, if 'zero' use all zeros as the backgroud data, if "min" use the min value of a vector of the training set, if 'global_min', use the min value of all training set. apply_logrithm: bool, default: False apply the logirthm to the feature importance score apply_smoothing: bool, default: False apply the gaussian smoothing on the feature importance score (s-map ) kernel_size: the kernel size for the smoothing sigma: the sigma for the smoothing. ''' self.estimator = estimator self.mp = mp self.apply_logrithm = apply_logrithm self.apply_smoothing = apply_smoothing self.kernel_size = kernel_size self.sigma = sigma self.backgroud = backgroud if backgroud == 'min': self.backgroud_data = mp.transform_mpX_to_df(self.estimator.X_).min().values elif backgroud == 'zeros': self.backgroud_data = np.zeros(shape=(len(mp.df_grid_reshape), )) else: gmin = self.estimator.X_.min() self.backgroud_data = np.full(shape=(len(mp.df_grid_reshape), ), fill_value = gmin) self.scaler = StandardScaler() df_grid = mp.df_grid_reshape.set_index('v') df_grid.index = self.mp.feature_names_reshape self.df_grid = df_grid if self.estimator.name == 'AggMap Regression Estimator': self._f = mean_squared_error else: self._f = log_loss def _sigmoid(self, x): return 1 / (1 + np.exp(-x)) def _islice(self, lst, n): return [lst[i:i + n] for i in range(0, len(lst), n)]
[docs] def global_explain(self, X=None, y=None): ''' Explaination of many samples. Parameters ---------- X: None or 4D array, where the shape is (n, w, h, c) the 4D array of AggMap multi-channel fmaps y: None or 4D array, where the shape is (n, class_num) the True label Noted that if X and y are None, then use the estimator.X_ and estimator.y_ instead, namely explain the training set of the estimator ''' if X is None: X = self.estimator.X_ y = self.estimator.y_ print_info('Explaining the whole samples of the training Set') assert len(X.shape) == 4, 'input X mush a 4D array: (n, w, h, c)' N, W, H, C = X.shape dfY = pd.DataFrame(y) Y_true = y Y_prob = self.estimator._model.predict(X, verbose = 0) T = len(self.df_grid) nX = 20 # 10 arrX to predict if self.estimator.name == 'AggMap MultiLabels Estimator': Y_prob = self._sigmoid(Y_prob) final_res = {} for k, col in enumerate(dfY.columns): print_info('calculating feature importance for class %s ...' % col) results = [] loss = self._f(Y_true[:, k].tolist(), Y_prob[:, k].tolist()) tmp_X = [] flag = 0 for i in tqdm(range(T), ascii= True): ts = self.df_grid.iloc[i] y = ts.y x = ts.x ## step 1: make permutaions X1 = np.array(X) #x_min = X[:, y, x,:].min() vmin = self.backgroud_data[i] X1[:, y, x,:] = np.full(X1[:, y, x,:].shape, fill_value = vmin) tmp_X.append(X1) if (flag == nX) | (i == T-1): X2p = np.concatenate(tmp_X) ## step 2: make predictions Y_pred_prob = self.estimator._model.predict(X2p, verbose = 0) #predict ont by one is not efficiency if self.estimator.name == 'AggMap MultiLabels Estimator': Y_pred_prob = self._sigmoid(Y_pred_prob) ## step 3: calculate changes for Y_pred in self._islice(Y_pred_prob, N): mut_loss = self._f(Y_true[:, k].tolist(), Y_pred[:, k].tolist()) res = mut_loss - loss # if res > 0, important, othervise, not important results.append(res) flag = 0 tmp_X = [] flag += 1 ## step 4:apply scaling or smothing s = pd.DataFrame(results).values if self.apply_logrithm: s = np.log(s) smin = np.nanmin(s[s != -np.inf]) smax = np.nanmax(s[s != np.inf]) s = np.nan_to_num(s, nan=smin, posinf=smax, neginf=smin) #fillna with smin a = self.scaler.fit_transform(s) a = a.reshape(*self.mp.fmap_shape) if self.apply_smoothing: covda = conv2(a, kernel_size=self.kernel_size, sigma=self.sigma) results = covda.reshape(-1,).tolist() else: results = a.reshape(-1,).tolist() final_res.update({col:results}) df = pd.DataFrame(final_res, index = self.mp.feature_names_reshape) df.columns = df.columns.astype(str) df.columns = 'simply_importance_class_' + df.columns df = self.df_grid.join(df) return df
[docs] def local_explain(self, X=None, y=None, idx=0): ''' Explaination of one sample only. Parameters ---------- X: None or 4D array, where the shape is (1, w, h, c) y: the True label, None or 4D array, where the shape is (1, class_num). idx: int, index of the sample to interpret Noted that if X and y are None, then use the estimator.X_[[idx]] and estimator.y_[[idx]] instead, namely explain the first sample if idx=0. Return ---------- Feature importance of the current class ''' if X is None: X = self.estimator.X_[[idx]] y = self.estimator.y_[[idx]] print_info('Explaining the one sample of the training Set') assert len(X.shape) == 4, 'input X mush a 4D array: (1, w, h, c)' assert (len(X) == 1) & (len(y) == 1), 'Input X, y must have one sample only, but got %s, %s' % (len(X), len(y)) N, W, H, C = X.shape dfY = pd.DataFrame(y) Y_true = y Y_prob = self.estimator._model.predict(X, verbose = 0) T = len(self.df_grid) nX = 20 # 10 arrX to predict if self.estimator.name == 'AggMap MultiLabels Estimator': Y_prob = self._sigmoid(Y_prob) results = [] loss = self._f(Y_true.ravel().tolist(), Y_prob.ravel().tolist()) all_X1 = [] for i in tqdm(range(T), ascii= True): ts = self.df_grid.iloc[i] y = ts.y x = ts.x X1 = np.array(X) vmin = self.backgroud_data[i] X1[:, y, x,:] = np.full(X1[:, y, x,:].shape, fill_value = vmin) all_X1.append(X1) all_X = np.concatenate(all_X1) all_Y_pred_prob = self.estimator._model.predict(all_X, verbose = 0) for Y_pred_prob in all_Y_pred_prob: if self.estimator.name == 'AggMap MultiLabels Estimator': Y_pred_prob = self._sigmoid(Y_pred_prob) mut_loss = self._f(Y_true.ravel().tolist(), Y_pred_prob.ravel().tolist()) res = mut_loss - loss # if res > 0, important, othervise, not important results.append(res) ## apply smothing and scalings s = pd.DataFrame(results).values if self.apply_logrithm: s = np.log(s) smin = np.nanmin(s[s != -np.inf]) smax = np.nanmax(s[s != np.inf]) s = np.nan_to_num(s, nan=smin, posinf=smax, neginf=smin) #fillna with smin a = self.scaler.fit_transform(s) a = a.reshape(*self.mp.fmap_shape) if self.apply_smoothing: covda = conv2(a, kernel_size=self.kernel_size, sigma=self.sigma) results = covda.reshape(-1,).tolist() else: results = a.reshape(-1,).tolist() df = pd.DataFrame(results, index = self.mp.feature_names_reshape, columns = ['simply_importance']) df = self.df_grid.join(df) return df
if __name__ == '__main__': ''' Model explaination using two methods: simply explainer and shapley explainer ''' import seaborn as sns ## simply explainer simp_explainer = simply_explainer(estimator, mp) global_imp_simp = simp_explainer.global_explain(clf.X_, clf.y_) local_imp_simp = simp_explainer.local_explain(clf.X_[[0]], clf.y_[[0]]) ## S-map of simply explainer sns.heatmap(local_imp_simp.simply_importance.values.reshape(mp.fmap_shape), cmap = 'rainbow') ## shapley explainer shap_explainer = shapley_explainer(estimator, mp) global_imp_shap = shap_explainer.global_explain(clf.X_) local_imp_shap = shap_explainer.local_explain(clf.X_[[0]]) ## S-map of shapley explainer sns.heatmap(local_imp_shap.shapley_importance_class_1.values.reshape(mp.fmap_shape), cmap = 'rainbow') ## shapley plot shap.summary_plot(shap_explainer.shap_values, feature_names = shap_explainer.feature_names) # #global plot_type='bar shap.initjs() shap.force_plot(shap_explainer.explainer.expected_value[1], shap_explainer.shap_values[1], feature_names = shap_explainer.feature_names)